

Michael G. Ison, MD MS FIDSA FAST

Professor, Divisions of Infectious Diseases and Organ Transplantation Director, Transplant and Immunocompromised Host Infectious Diseases Service Director, NUCATS Center for Clinical Research Northwestern University Feinberg School of Medicine

CME Information

Jointly provided by Postgraduate Institute for Medicine, DKBmed, and the Institute for Johns Hopkins Nursing.

Disclosure of Conflicts of Interest

Postgraduate Institute for Medicine (PIM) requires instructors, planners, managers, and other individuals who are in a position to control the content of this activity to disclose any real or apparent conflict of interest (COI) they may have as related to the content of this activity. All identified COI are thoroughly vetted and resolved according to PIM policy. PIM is committed to providing its learners with high quality activities and related materials that promote improvements or quality in healthcare and not a specific proprietary business interest of a commercial interest.

The faculty reported the following financial relationships or relationships they or their spouse/life partner have with commercial interests related to the content of this continuing education activity:

Name of Faculty or Presenter	Reported Financial Relationship
Michael G. Ison, MD MS FIDSA FAST	Consulting: Adagio, AlloVir, Celltrion, Cidara, Ger Contracted Research: AiCuris, Janssen, Shire Other DSMB: NIH, Janssen, Merck, SAB Biothera

Dr. Ison has indicated that he will be referencing the unlabeled or unapproved use of agents currently being investigated in on-going studies and trials, including several vaccine platforms.

All activity, content, and materials have been developed solely by the activity directors, planning committee members, and faculty presenters, and are free of influence from a commercial entity.

enentech/Roche, Janssen, Shionogi, Viracor Eurofins

rapeutics, Sequiris, Takeda, Vitaeris

This educational activity is supported by independent medical educational grants from Gilead Sciences, Inc., Regeneron Pharmaceuticals, Inc., and Eli Lilly and Company.

All activity content and materials have been developed solely by the planning committee members, and faculty presenters.

Learning Objectives

- 1. Appraise the efficacy, safety and indications for treatments for patients with COVID requiring hospitalization.
- 2. Evaluate management strategies for outpatients with mild to moderate COVID-19.
- 3. Explain mechanisms of action of monoclonal antibodies (mAbs) and other current and in-development treatments for COVID-19.
- Describe best practices for managing patients with COVID-19 with mAbs and other agents.

COVID 19

Keeping Up with a Moving Target

PRE-TEST

How confident are you in describing current management strategies for mild to moderate COVID-19?

- Not confident 1.
- Slightly confident 2.
- Moderately confident 3.
- Highly confident 4.

According to the ACTT-1 trial, which group of included patients benefitted the most from remdesivir?

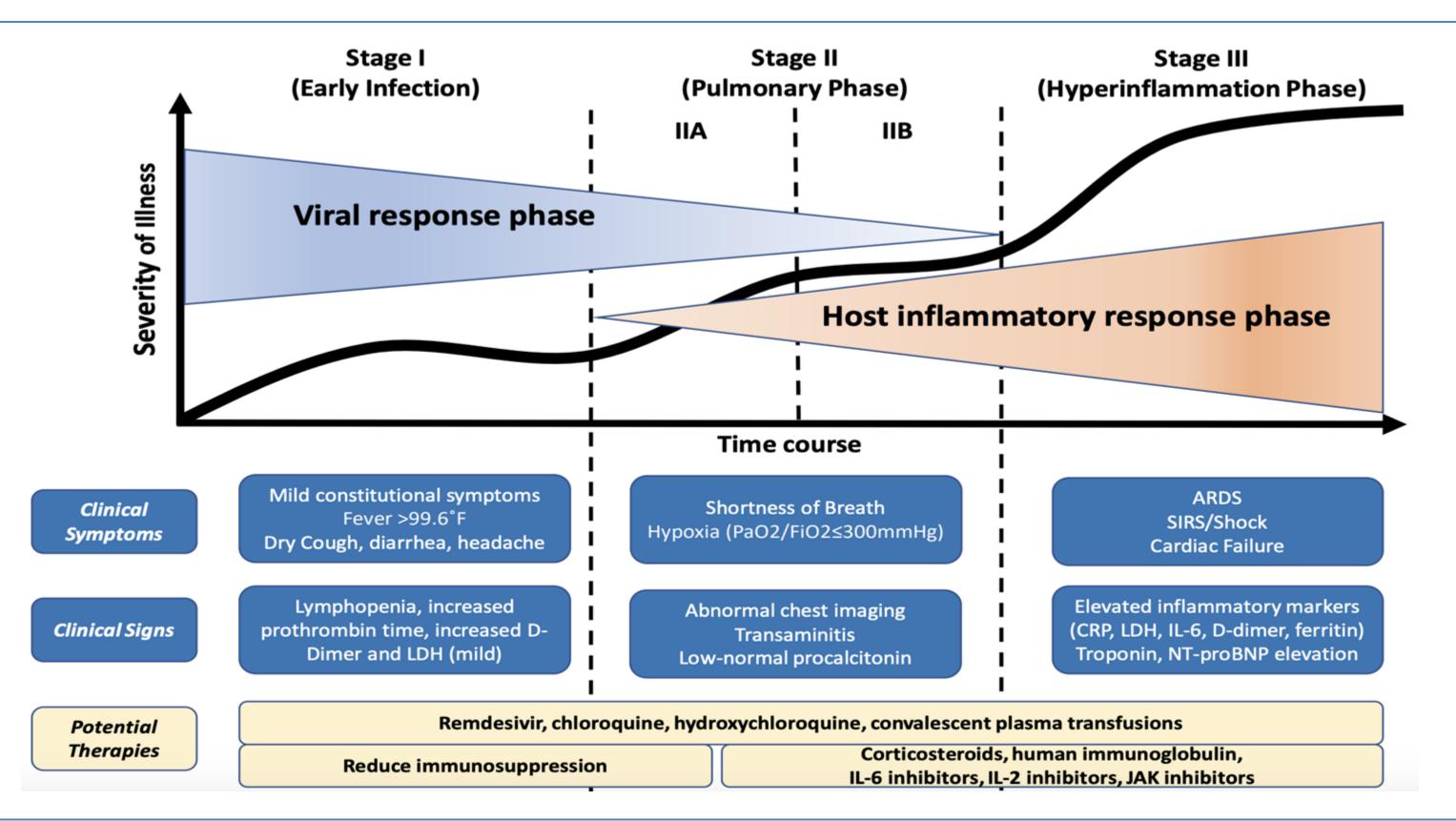
- All included patients benefitted equally 1.
- Patients not receiving oxygen 2.
- Patients receiving noninvasive mechanical ventilation 3.
- Patients receiving mechanical ventilation or ECMO 4.

A 22-year-old previously healthy patient with no underlying conditions has mild COVID-19. Which of following is/are recommended for this patient?

- Home isolation 1
- Symptom monitoring 2.
- Dexamethasone 3.
- Monoclonal antibodies 4
- 1 and 2 5
- 1 and 3 6.

Monoclonal antibodies are thought to primarily work by blocking the virus' ability to attach to and enter human cells.

- True 1.
- 2. False



Monoclonal antibody products are authorized to treat which group of patients with confirmed COVID-19?

- Any patient 1.
- Any non-hospitalized patient \geq 18 years of age 2.
- Non-hospitalized patients \geq 12 years of age at high risk for severe disease 3.
- Hospitalized patients for COVID-19 \geq 12 years of age requiring oxygen 4. support

How and When to Intervene?

Outpatient Management of COVID-19: Preventing Hospitalization

Home Care

- Monitor symptoms
- Supportive care
- Infection prevention and control measures

Isolation for People with COVID-19

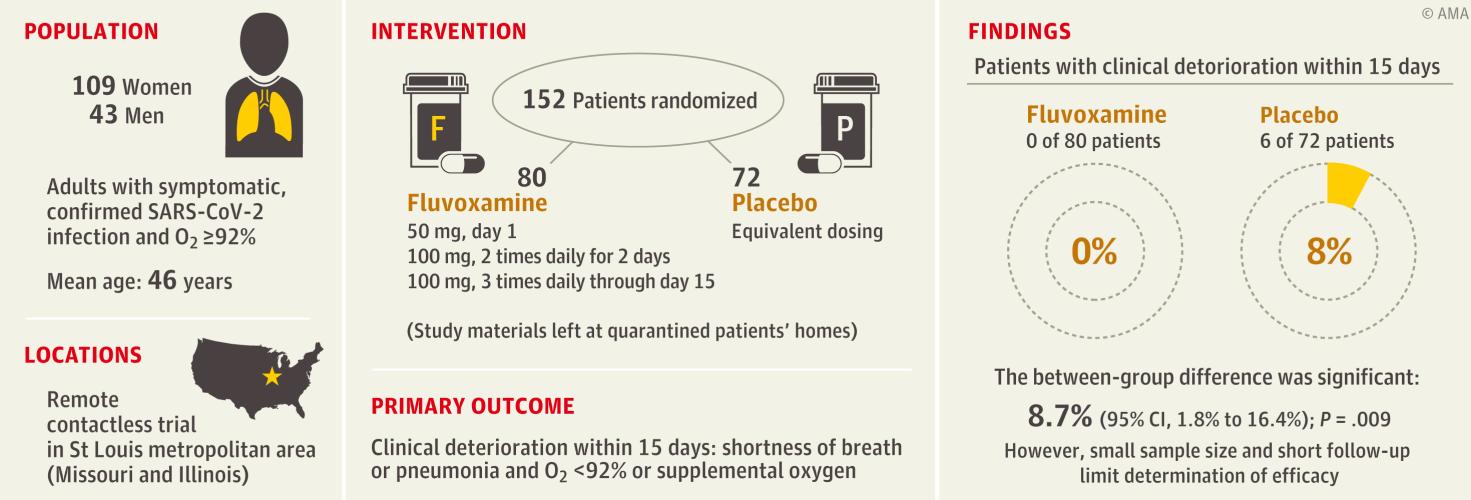
May be discontinued under these conditions:

- At least 10 days since symptom onset, and
- At least 24 hours since resolution of fever without fever-reducing meds, and
- Other symptoms have improved

- After day 10 without testing if no symptoms
- After day 7 if testing is negative and no symptoms

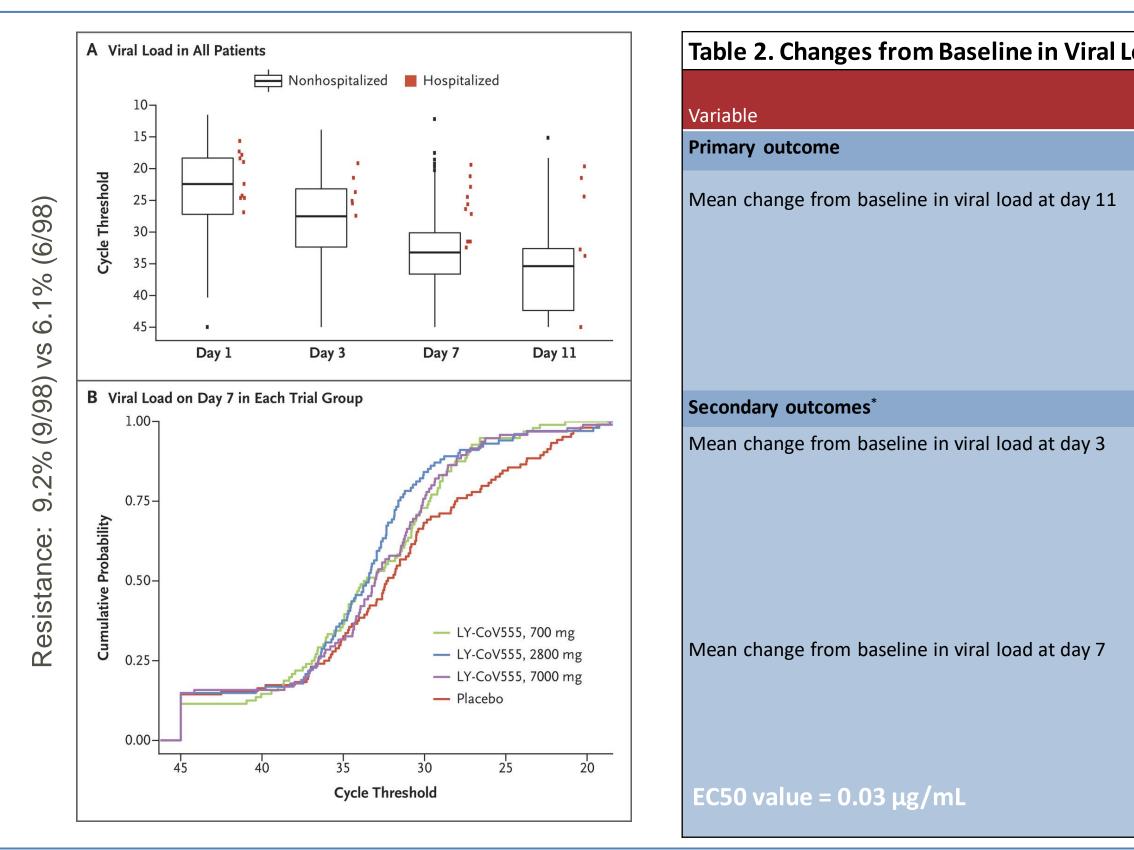
Quarantine for Close Contacts

Recommended for 14 days, but can end early:

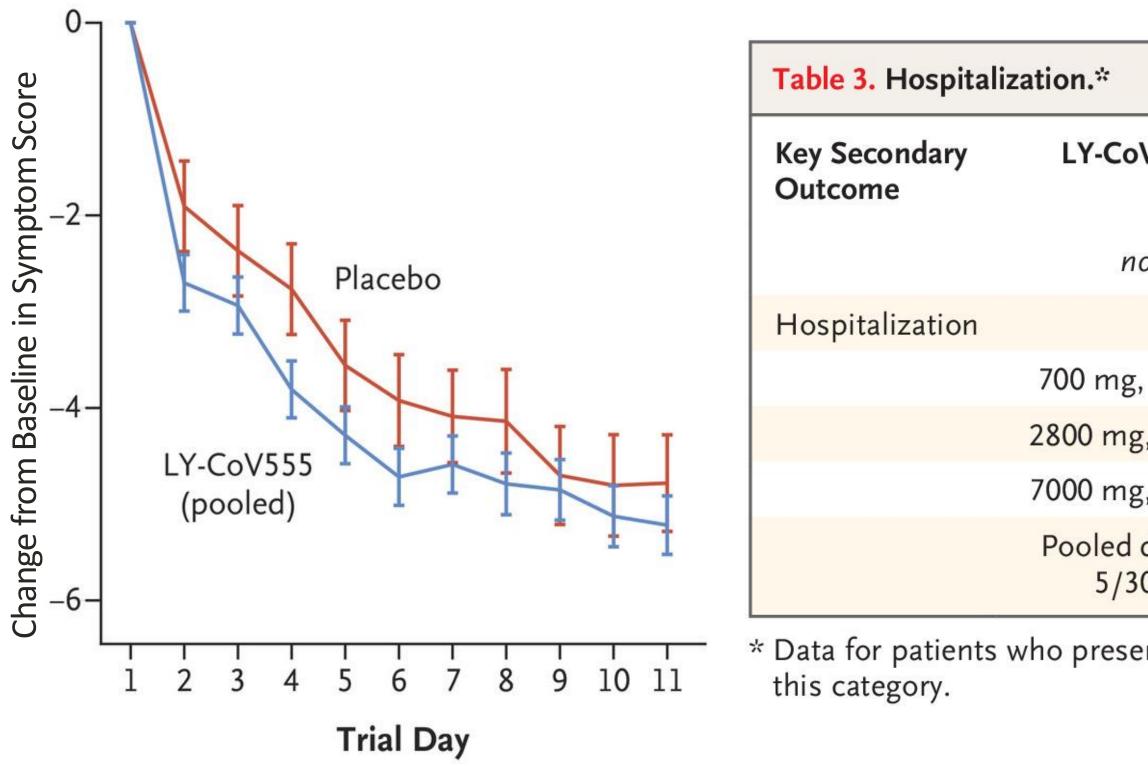

Symptom monitoring and masking through day 14 still required.

Fluvoxamine

JAMA Network


QUESTION Does fluvoxamine, a selective serotonin reuptake inhibitor and σ -1 receptor agonist, prevent clinical deterioration in outpatients with acute coronavirus disease 2019 (COVID-19)?

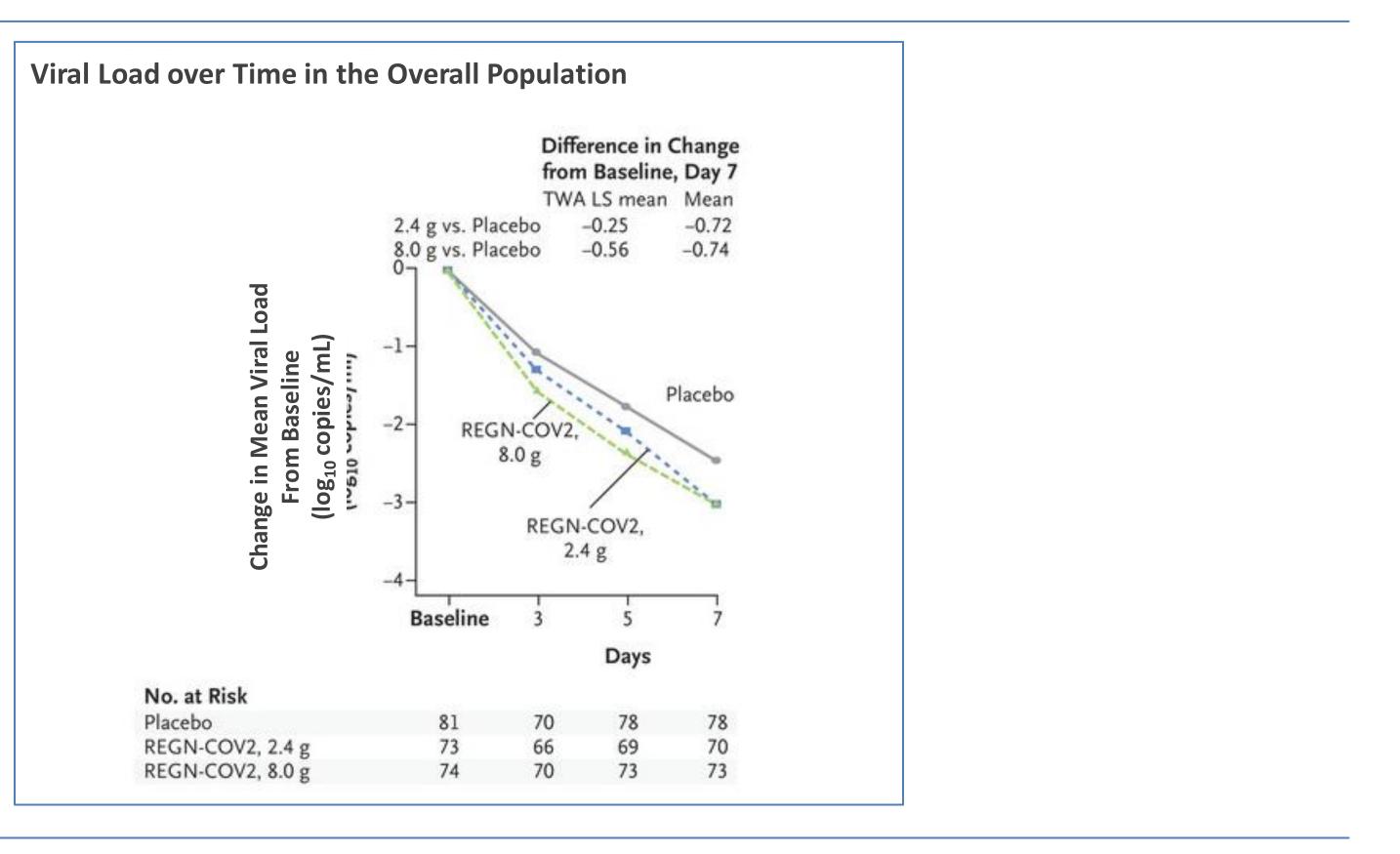
CONCLUSION In this preliminary trial, outpatients with symptomatic COVID-19 treated with fluvoxamine, vs placebo, had a lower likelihood of clinical deterioration over 15 days; however, determination of clinical efficacy requires larger trials with more definitive outcome measures.


Bamlanivimab

_oad		
LY-CoV555 (N=309)	Placebo (N=143)	Difference (95% Cl)
	-3.47	
700 mg, −3.67		–0.20 (–0.66 to 0.25)
2800 mg, -4.00		–0.53 (–0.98 to –0.08)
7000 mg, −3.38		0.09 (–0.37 to 0.55)
Pooled doses, -3.70		–0.22 (–0.60 to 0.15)
	-0.85	
700 mg, −1.27		-0.42 (-0.89 to 0.06)
2800 mg, −1.50		-0.64 (-1.11 to -0.17)
7000 mg, −1.27		-0.42 (-0.90 to 0.06)
Pooled doses, -1.35		-0.49 (-0.87 to -0.11)
	-2.56	
700 mg, −2.82		-0.25 (-0.73 to 0.23)
2800 mg, -3.01		-0.45 (-0.92 to 0.03)
7000 mg, −2.85		-0.28 (-0.77 to 0.20)
Pooled doses, -2.90		-0.33 (-0.72 to 0.06)

Bamlanivimab

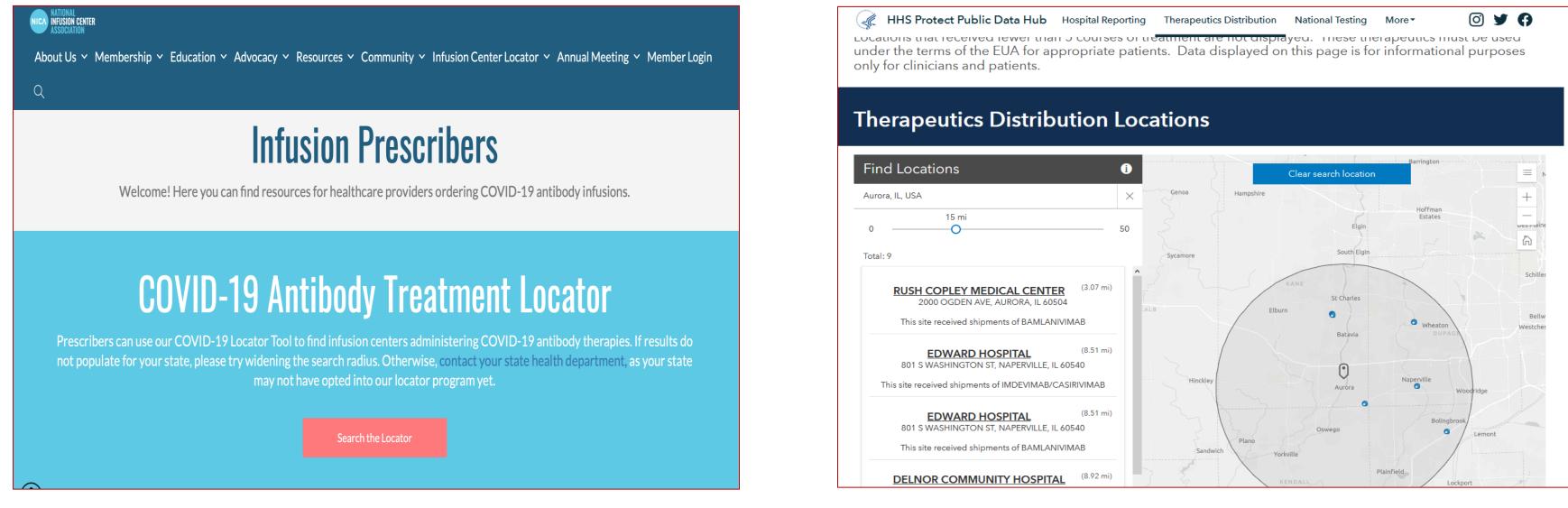
V555	Placebo	Incidence
o. of patient	s/total no.	%
	9/143	6.3
, 1/101		1.0
g, 2/107		1.9
g, 2/101		2.0
doses, 09		1.6


* Data for patients who presented to the emergency department are included in

Casirivimab and Imdevimab: Key Endpoints

	REGN-COV2				REGN-COV2			Placeba		
End Point	2.4	8.0	Combined	Placebo	End Point	2.4	8.0	Combined	– Placebo	
Time-weighted average change in viral load from day 1 through day 7				Time-weighted average change in viral load from day 1 through day 7						
Modified full analysis set					Baseline serum antibody status: Positive					
No. of patients	70	73	143	78	No. of patients	27	29	56	37	
Least-squares mean change – log ₁₀ copies/mL	-1.60±0.14	-1.90±0.14	-1.74±0.11	-1.34±0.13	Least-squares mean change – log10 copies/mL	-1.24±0.19	-1.63±0.20	-1.45±0.13	-1.24±0.16	
95% CI	-1.87 to -1.32	-2.18 to -1.62	-1.95 to1.53	-1.60 to -1.08	95% CI	-1.61 to -0.86	-2.03 to - 1.24	-1.71 to -1.18	-1.55 to -0.93	
Difference vs placebo at day 7 – log10 copies/mL					Difference vs placebo at day 7 – log ₁₀ copies/mL					
Least-squares mean change	-0.25±0.18	-0.56±0.18	-0.41±0.15		Least-squares mean change	0.00±0.24	-0.39±0.25	-0.21±0.20		
95% CI	-0.60 to 0.10	-0.91 to -0.21	-0.71 to -0.10		95% CI	-0.48 to 0.49	-0.89 to 0.11	-0.62 to 0.20		
Baseline serum antibody status: Negati	ve				Baseline serum antibody status: Unknown					
No. of patients	34	35	69	28	No. of patients	9	9	18	13	
Least-squares mean change – log10 copies/mL	-1.89±0.18	-1.96±0.18	-1.94±0.13	-1.37±0.20	Least-squares mean change – log10 copies/mL	-0.95±0.56	-1.98±0.60	-1.43±0.44	-1.49±0.63	
95% CI	-2.24 to -1.53	-2.33 to -1.60	-2.20 to -1.67	-1.76 to -0.98	95% CI	-2.12 to 0.22	-3.22 to -0.73	-2.34 to -0.51	-2.79 to -0.19	
Difference vs placebo at day 7 – log ₁₀ copies/mL					Difference vs placebo at day 7 – log ₁₀ copies/mL					
Least-squares mean change	-0.52±0.26	-0.60±0.26	-0.56±0.23		Least-squares mean change	0.54±0.84	-0.49±0.86	0.06±0.76		
95% CI	-1.04 to 0.00	-1.12 to -0.08	-1.02 to -0.11		95% CI	-1.20 to 2.28	-2.27 to 1.30	-1.51 to 1.63		

Casirivimab and Imdevimab

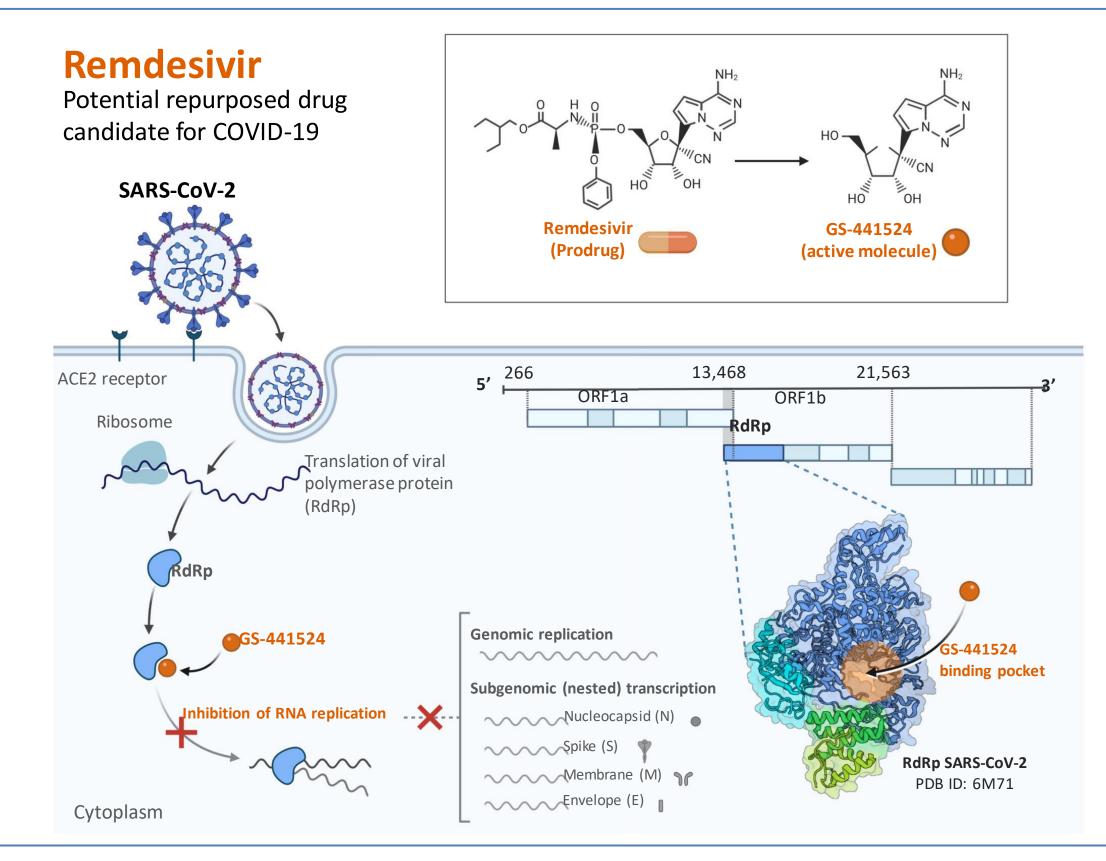

Facilitating mAb Treatments

- Identify patients: must be at risk of severe disease per
 EUA fact sheets (eg, BMI ≥35, age ≥65 years, diabetes, CKD, etc) but not currently in hospital or requiring oxygen because of COVID.
- Discuss benefits, risks, and process with patients:
 - One-hour IV infusion
 - One-hour monitoring after infusion
 - Continue self-isolation and infection control measures
- ONLY administer in settings in which health care providers have immediate access to medications to treat a severe infusion reaction, such as anaphylaxis, and the ability to activate the emergency medical system as necessary.
- Check state department of health

Finding Antibodies

Covid.infusioncenter.org

https://protect-public.hhs.gov/pages/therapeutics-distribution#distribution-locations



COVID 19

Keeping Up with a Moving Target

HOSPITALIZED PATIENTS

Remdesivir (GS-5734): IV Antiviral Drug for SARS-CoV-2

Remdesivir (GS-5734): NIAID ACTT

Table 2. Outcomes Overall and According to Score on the Ordinal Scale in the Intention-to-Treat Population.*	Ove	erall	Ordinal Score at Baseline							
	4		5		6		7			
	Remdesivir (N=541)	Placebo (N=521)	Remdesivir (N=75)	Placebo (N=63)	Remdesivir (N=232)	Placebo (N=203)	Remdesivir (N=95)	Placebo (N=98)	Remdesivir (N=131)	Placebo (N=154)
Recovery										
No. of recoveries	399	352	73	58 58	206	156	57	61	63	77
Median time to recovery (95% CI) — days	10 (9–11)	15 (13–18)	5 (4–6)	6 (4–7) 6 (4–7)	7 (6–8)	9 (7–10)	15 (10–27)	20 (14–26)	29 (24–NE)	28 (24–NE)
Rate ratio (95% CI) <u>†</u>	1.29 (1.12–1	.49[P<0.001])	1.29 (0.9	91–1.83)	1.45 (1.	18–1.79)	1.09 (0.	76–1.57)	0.98 (0	.70–1.36)
Mortality through day 14										
Hazard ratio for data through day 15 (95% CI)	0.55 (0.3	36–0.83)	0.42 (0.0)4–4.67)	0.28 (0.	12–0.66)	0.82 (0.	40–1.69)	0.76 (0	.39–1.50)
No. of deaths by day 15	35	61	1	2	7	21	13	17	14	21
Kaplan–Meier estimate of mortality by day 15 — % (95% CI)	6.7 (4.8–9.2)	11.9 (9.4–15.0)	1.3 (0.2–9.1)	3.2 (0.8–12.1)	3.1 (1.5–6.4)	10.5 (7.0–15.7)	14.2 (8.5–23.2)	17.3 (11.2–26.4)	10.9 (6.6–17.6)	13.8 (9.2–20.4)
Mortality over entire study period										
Hazard ratio (95% CI)	0.73 (0.5	52–1.03)	0.82 (0.1	7–4.07)	0.30 (0.	14–0.64)	1.02 (0.	54–1.91)	1.13 (0	.67–1.89)
No. of deaths by day 29	59	77	3	3	9	25	19	20	28	29
Kaplan–Meier estimate of mortality by day 29 — % (95% CI)	11.4 (9.0–14.5)	15.2 (12.3–18.6)	4.1 (1.3–12.1)	4.8 (1.6–14.3)	4.0 (2.1–7.5)	12.7 (8.8–18.3)	21.2 (14.0–31.2)	20.4 (13.7–29.8)	21.9 (15.7–30.1)	19.3 (13.8–26.5)
Odds ratio (95% CI)	1.5 (1.	2–1.9)	1.5 (0.	8–2.7)	1.6 (1	.2–2.3)	1.4 (0	.9–2.3)	1.2 (0).8–1.9)

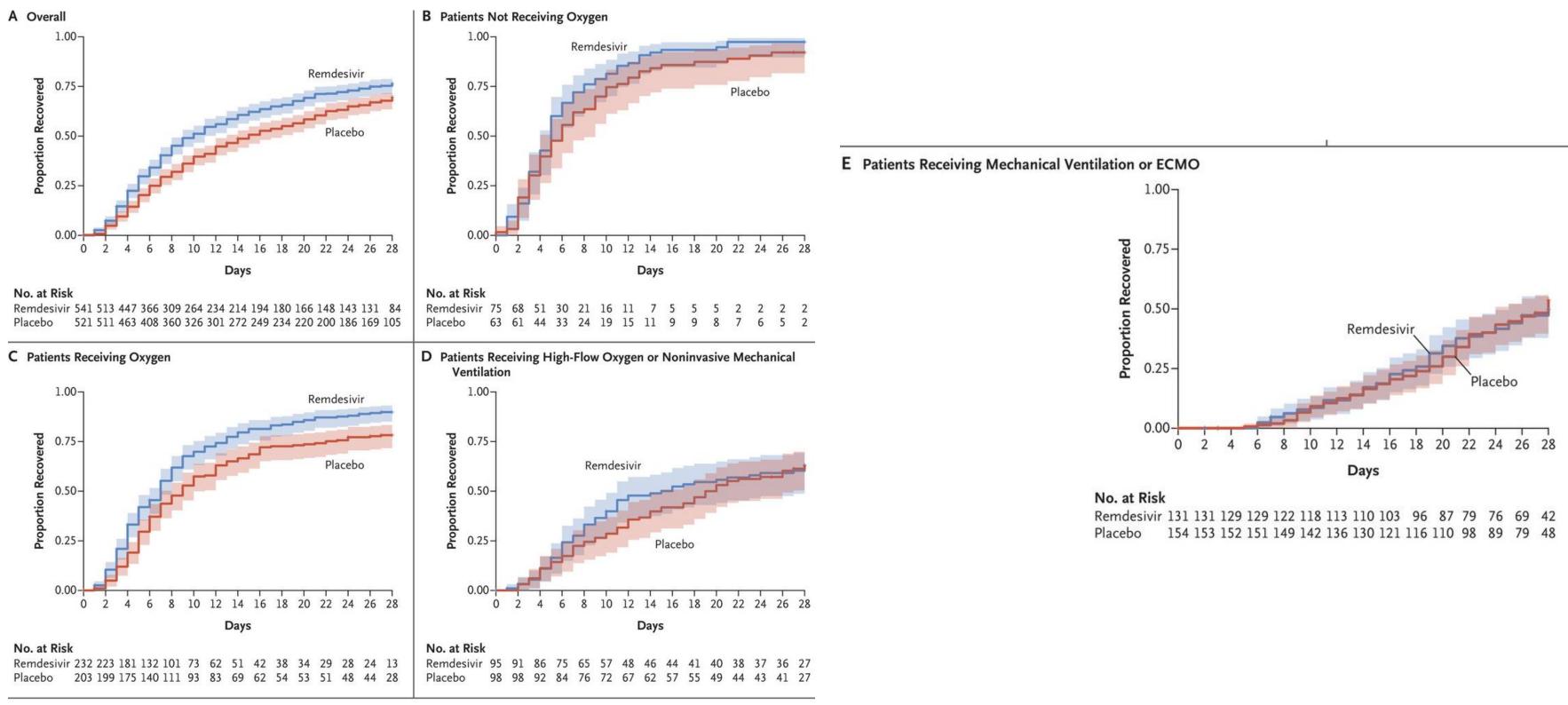
* P values and confidence intervals have not been adjusted for multiple comparisons. NE denotes not possible to estimate.

† Recovery rate ratios and hazard ratios were calculated from the stratified Cox model; the P value for this ratio was calculated with the stratified log-rank test (overall model stratified by actual disease severity). Recovery rate ratios greater than 1 indicate a benefit with remdesivir; hazard ratios less than 1 indicate a benefit with remdesivir.

COVID19: Keeping Up with a Moving Target

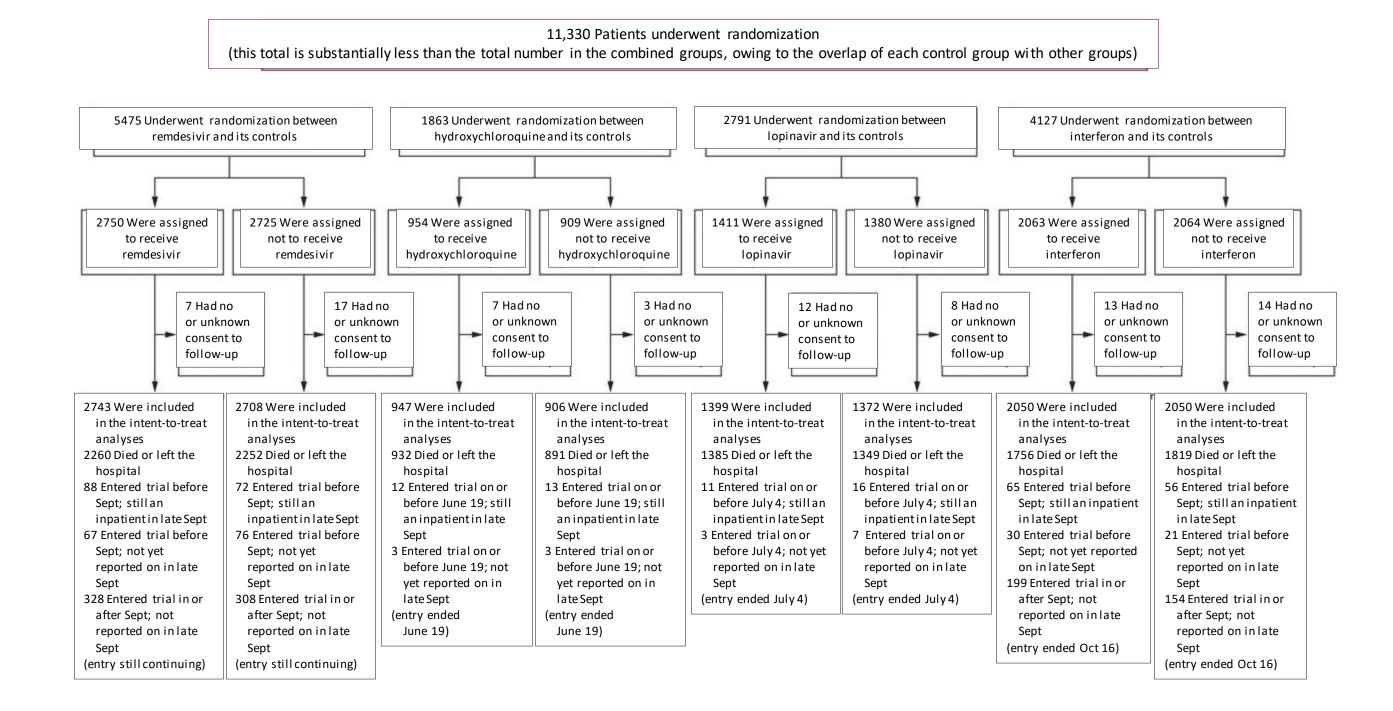
Beigel et al. N Eng J Med. 2020: doi.org/10.1056/NEJMoa20007764. 23

Remdesivir (GS-5734): NIAID ACTT

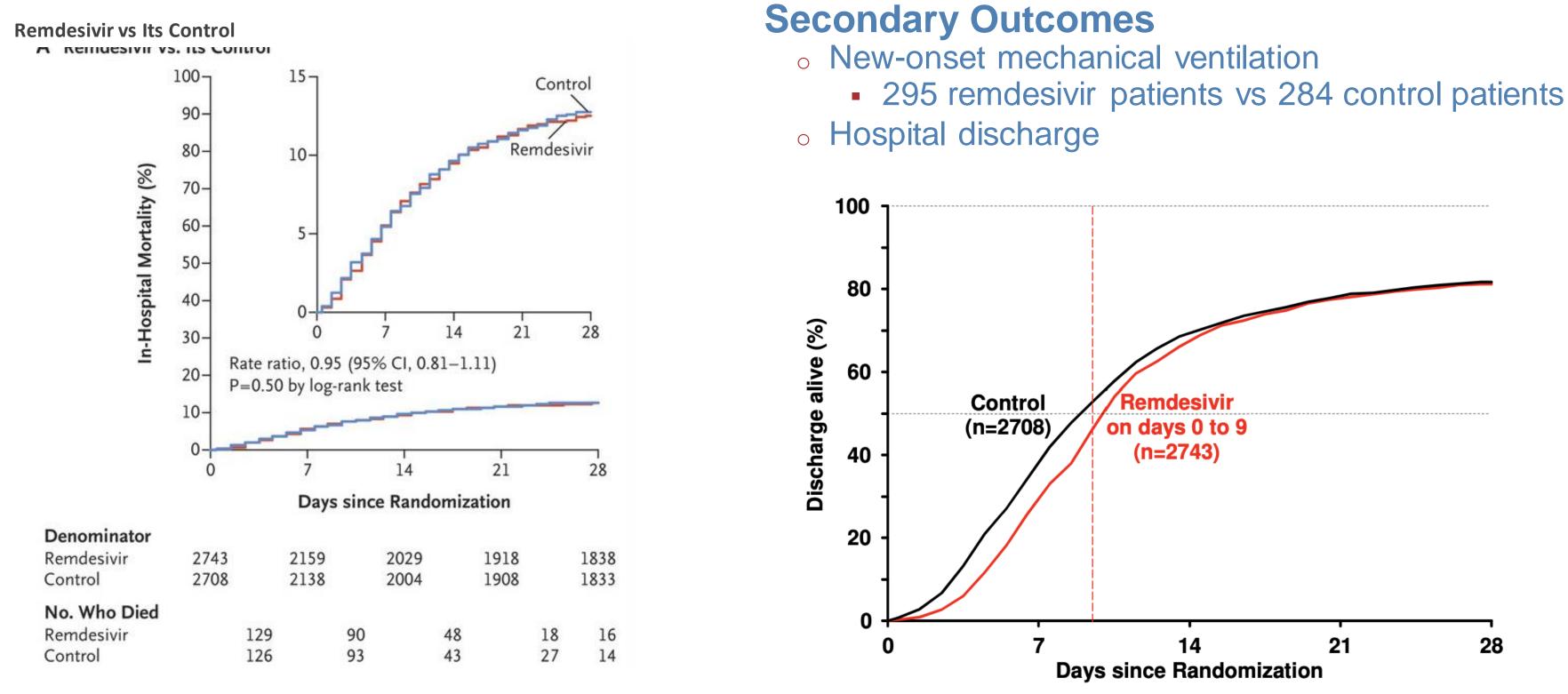

Table 3. Additional Secondary Outcomes	Remdesivir (N=541)	Placebo (N=521)	Rate Ratio (95% CI)
Median time to clinical improvement (95% CI) — days			
Improvement of one category on ordinal scale	7.0 (6.0 to 8.0)	9.0 (8.0 to 11.0)	1.23 (1.08 to 1.41)
Improvement of two categories on ordinal scale	11.0 (10.0 to 13.0)	14.0 (13.0 to 15.0)	1.29 (1.12 to 1.48)
Discharge or National Early Warning Score ≤2 for 24 hr <u>*</u>	8.0 (7.0 to 9.0)	12.0 (10.0 to 15.0)	1.27 (1.10 to 1.46)
			Difference (95% CI)
Hospitalization			
Median duration of initial hospitalization (IQR) — days	12 (6 to 28)	17 (8 to 28)	-5.0 (-7.7 to -2.3)
Median duration of initial hospitalization among those who did not die (IQR) — days	10 (5 to 21)	14 (7 to 27)	-4.0 (-6.0 to -2.0)
Patients rehospitalized — % (95% CI)	5 (3 to 7)	3 (2 to 5)	2 percentage points (0 to 4)
Oxygen			
Median days receiving oxygen if receiving oxygen at baseline (IQR)	13 (5 to 28)	21 (8 to 28)	-8.0 (-11.8 to -4.2)
New use of oxygen			
No. of patients/total no.	27/75	28/63	
Percent of patients (95% CI)	36 (26 to 47)	44 (33 to 57)	-8 (-24 to 8)
Median days receiving oxygen (IQR)	4 (2 to 12)	5.5 (1 to 15)	-1.0 (-7.6 to 5.6)

* Plus-minus values are means ±SD. Percentages may not total 100 because of rounding. IQR denotes interquartile range, and ECMO extracorporeal membrane oxygenation. The full table of baseline characteristics is available in the Supplementary Appendix. † Race and ethnic group were reported by the patients. The number of patients in other races and ethnic groups are listed in Table S1 in the Supplementary Appendix.

Beigel et al. N Eng J Med. 2020: doi.org/10.1056/NEJMoa20007764. 24

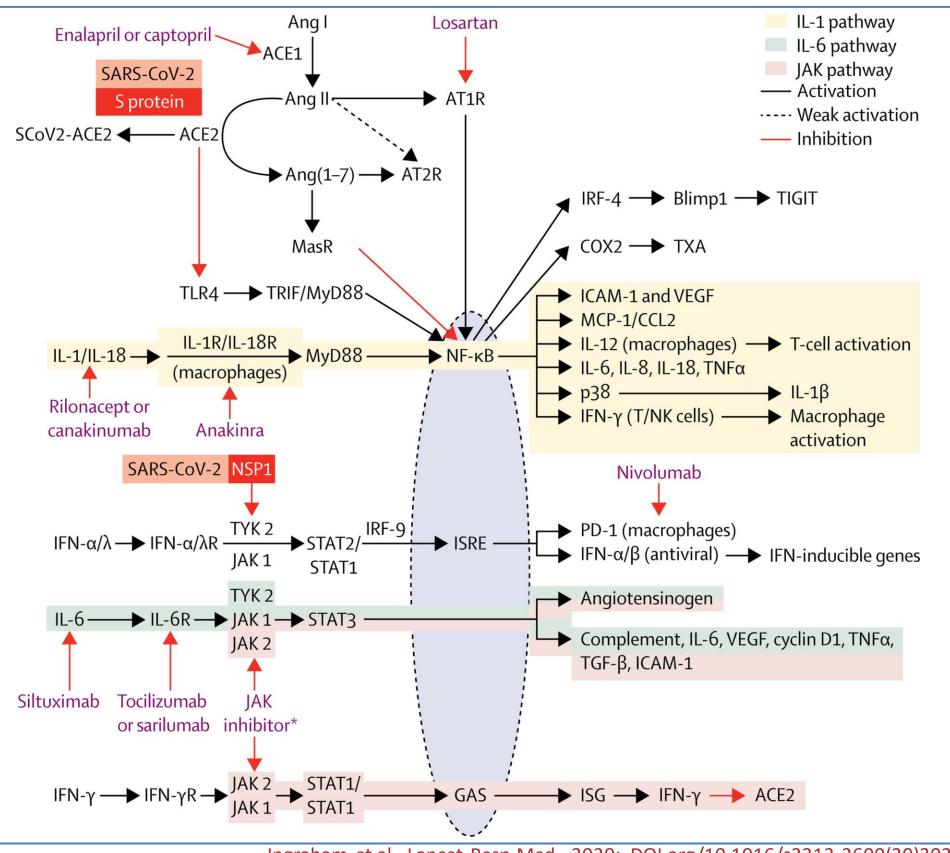

Remdesivir (GS-5734): ACTT

COVID19: Keeping Up with a Moving Target



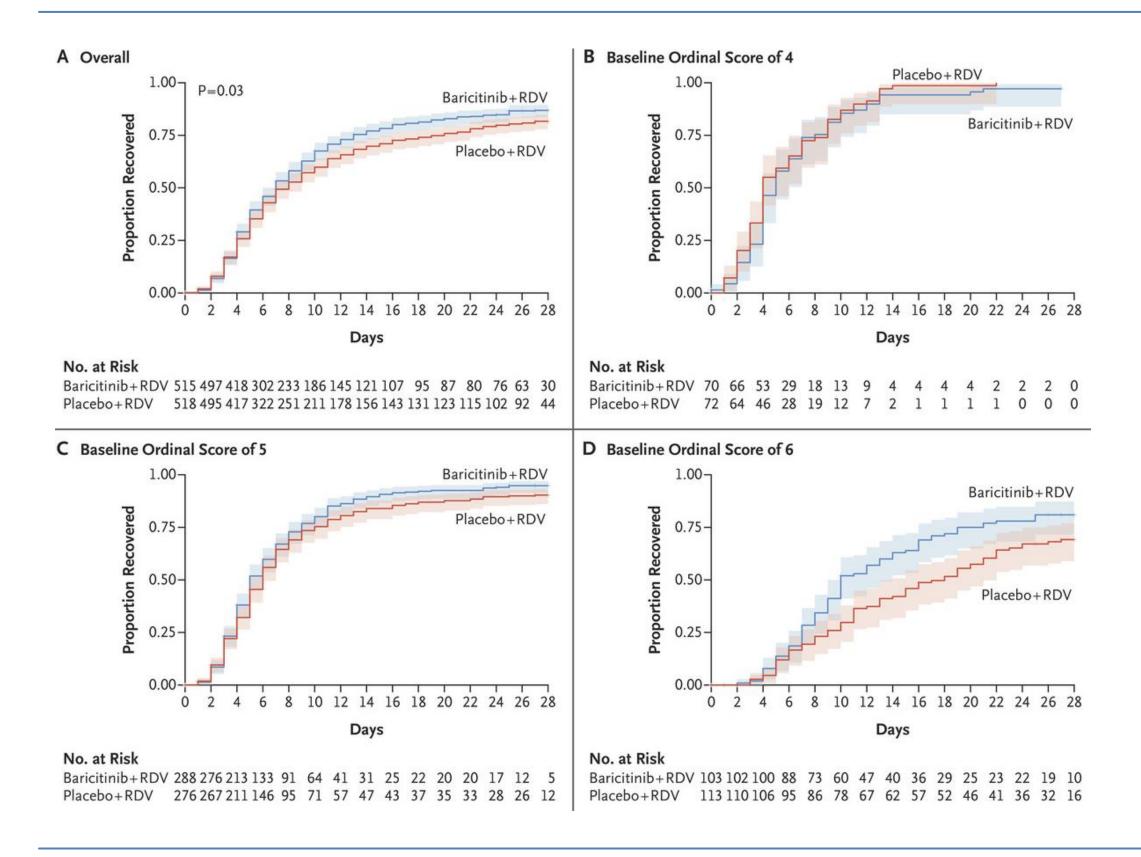
Remdesivir (GS-5734): SOLIDARITY Trial

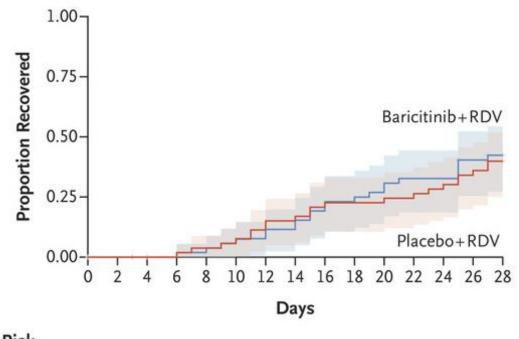
Remdesivir (GS-5734): SOLIDARITY Trial


COVID19: Keeping Up with a Moving Target

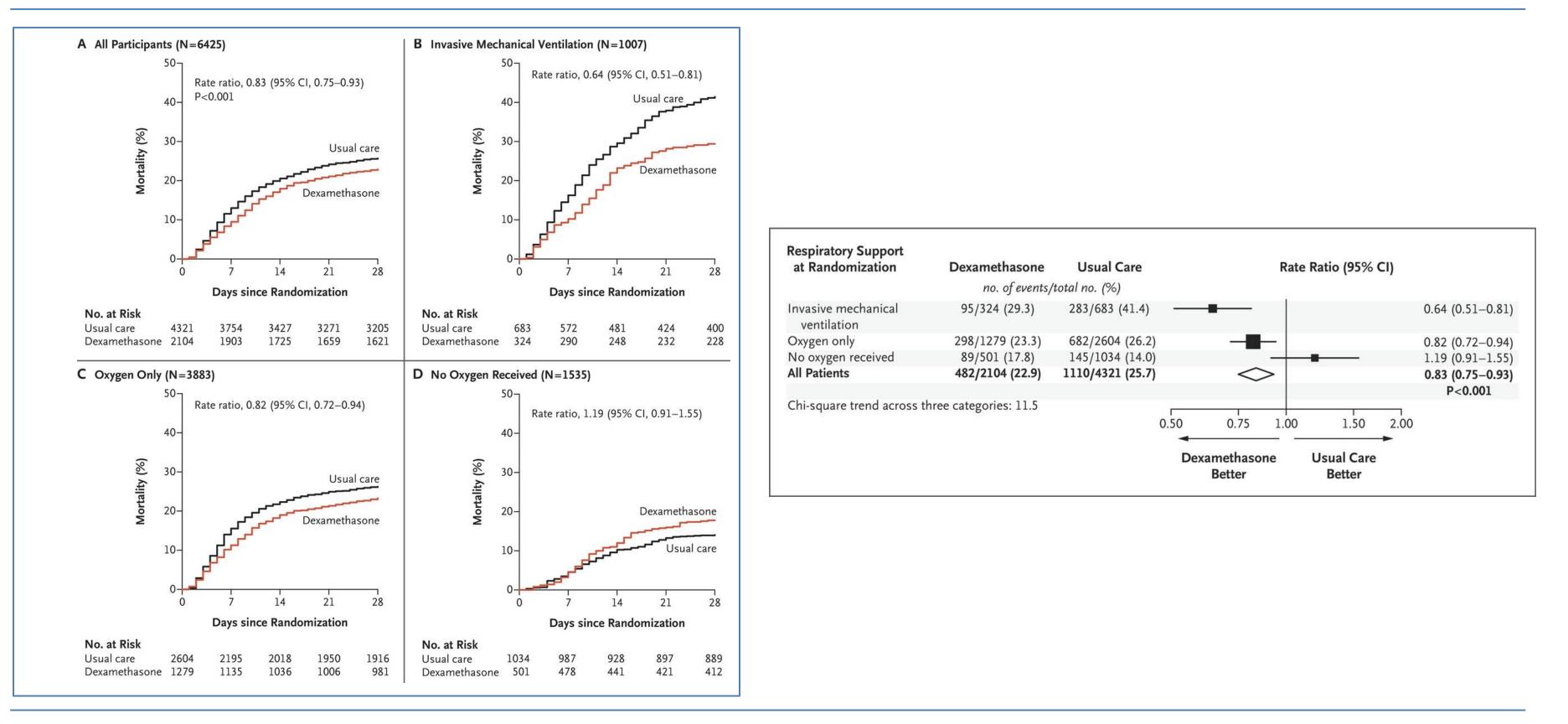
WHO Solidarity Trial Consortium. N Engl J Med. 2020. DOI: 28 10.1056/NEJMoa2023184.

Immune Modulation Therapy


- IL6R: Tocilizumab, Sarilumab •
- JAK: Baricitinib, Ruxolitinib •
- IL-1: Canakinumab, Anakinra
- **BTK Inhibitor: Ibrutinib**
- Steroids •


Ingraham et al. Lancet Resp Med. 2020: DOI.org/10.1016/s2213-2600(20)30226-5 29 Tay et al. Nat Rev Immunolo. 2020: doi.org/10.1038/s41577-020-0311-8.

Baricitinib: NIAID ACTT2



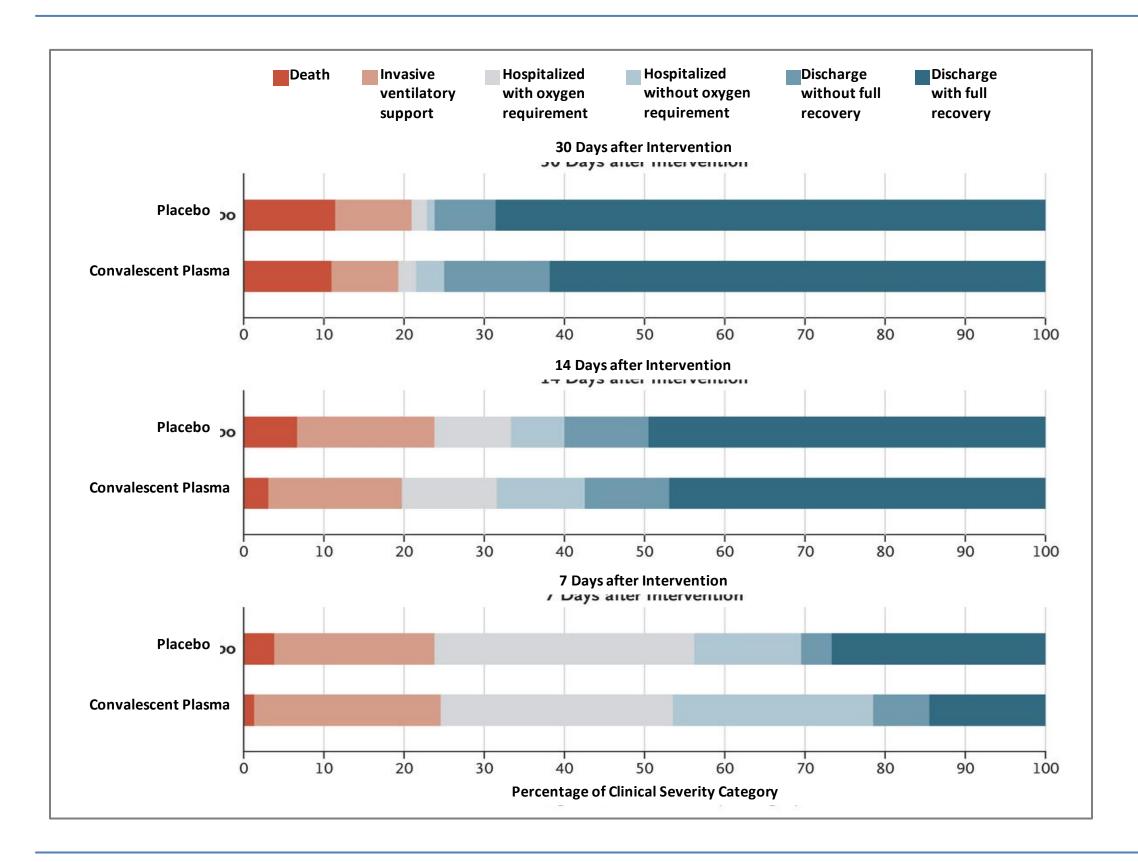
E Baseline Ordinal Score of 7

No. at Risk Baricitinib+RDV 54 53 52 52 51 49 48 46 42 40 38 35 35 30 15 Placebo+RDV 57 54 54 53 51 50 47 45 42 41 41 40 38 34 16

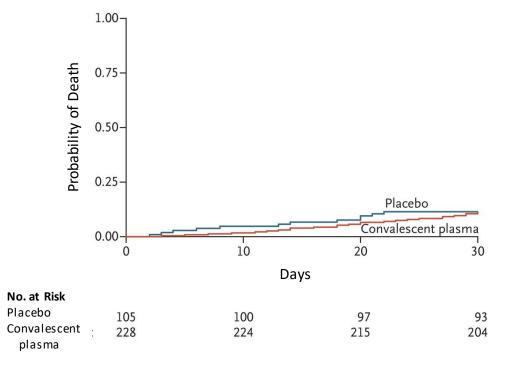
Dexamethasone

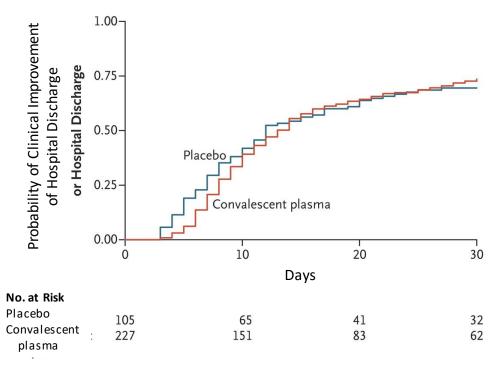
COVID19: Keeping Up with a Moving Target

Steroids


	ClinicalTrials.gov	Initial dose and	No. of dea No. of pat	Odds rat	
Drug and trial	identifier	administration	Steroids No steroi		(95% CI
Dexamethasone					
DEXA-COVID 19	NCT04325061	High: 20 mg/d intravenously	2/7	2/12	2.00 (0.
CoDEX	NCT04327401	High: 20 mg/d intravenously	69/128	76/128	0.80 (0.
RECOVERY	NCT04381936	Low: 6 mg/d orally or intravenously	95/324	283/683	0.59 (0.
Subgroup fixed e	ffect		166/459	361/823	0.64 (0.
Hydrocortisone					
CAPE COVID	NCT02517489	Low: 200 mg/d intravenously	11/75	20/73	0.46 (0.
COVID STEROID	NCT04348305	Low: 200 mg/d intravenously	6/15	2/14	4.00 (0.
REMAP-CAP	NCT02735707	Low: 50 mg every 6 h intravenously	26/105	29/92	0.71 (0.
Subgroup fixed e	ffect		43/195	51/179	0.69 (0.
Methylprednisolon	e				
Steroids-SARI	NCT04244591	High: 40 mg every 12 h intravenously	13/24	13/23	0.91 (0.
Overall (fixed effect P=.31 for heteroge	,		222/678	425/1025	0.66 (0.
Overall (random ef	fects ^a)		222/678	425/1025	0.70 (0.

WHO REACT Group. JAMA. 2020. DOI: 10.1001/jama.2020.17023. 32


Convalescent Plasma


COVID19: Keeping Up with a Moving Target

Time from Intervention to Death

Time from Intervention to Improvement

Simonovich et al. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2031304. 33

Convalescent Plasma

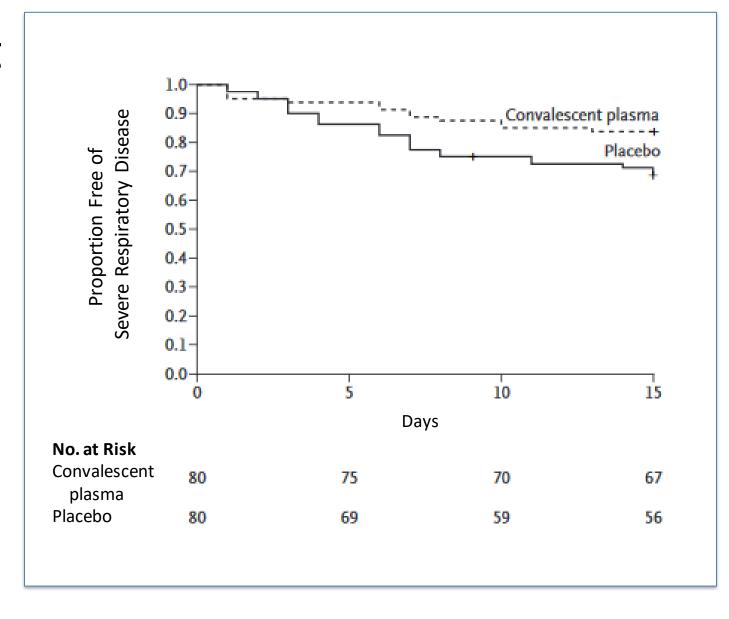

- Early high-titer plasma
- Administered within 72 hours after symptom onset
- Older adults

Table 3. Primary Endpoint, According to Donor SARS-CoV-2 S IgG Titer

Patient Group	Patients with Severe Respiratory Disease	Relative Risk (95% Cl)	Relative Risk Reduction
	no./total no. (%)		percent
Placebo	25/80 (31)	1.00	
Recipient of SARS-CoV-2 S lgG in donor plasma*			
At a titer at or above median concentration	3/36 (8)	0.27 (0.08-0.68)	73.3
At a titer below median concentration	9/42 (21)	0.69 (0.34-1.31)	31.4

*The median concentration is a SARS-CoV-2 S lgG titer of 1:3200.

Treatment Eligibility

Treatment	Status	Eligibility
Monoclonal antibodies: Bamlanivimab Casirivimab + imdevimab	EUA	Outpatients (≥12 yrs) disease, based on est onset; Excluding: patie
Remdesivir	Approved	Patients (≥12 yrs and
Dexamethasone	Off label	Patients requiring sup
Convalescent plasma	EUA	Hospitalized patients
Remdesivir + baricitinib	EUA	Hospitalized patients (invasive mechanical v

- with confirmed COVID at risk for severe stablished criteria, within 10 days of symptom ients requiring oxygen because of COVID
- ≥40 kg) requiring hospitalization
- oplemental oxygen

(≥2 yrs) requiring supplemental oxygen, ventilation, or ECMO

COVID 19

Keeping Up with a Moving Target

POST-TEST

How confident are you in describing current management strategies for mild to moderate COVID-19?

- Not confident 1
- Slightly confident 2.
- Moderately confident 3.
- Highly confident 4.

According to the ACTT-1 trial, which group of included patients benefitted the most from remdesivir?

- All included patients benefitted equally 1.
- Patients not receiving oxygen 2.
- Patients receiving noninvasive mechanical ventilation 3.
- Patients receiving mechanical ventilation or ECMO 4.

A 22-year-old previously healthy patient with no underlying conditions has mild COVID-19. Which of following is/are recommended for this patient?

- Home isolation 1
- Symptom monitoring 2.
- Dexamethasone 3.
- Monoclonal antibodies 4
- 1 and 2 5
- 1 and 3 6.

Monoclonal antibodies are thought to primarily work by blocking the virus' ability to attach to and enter human cells.

- True 1.
- 2. False

Monoclonal antibody products are authorized to treat which group of patients with confirmed COVID-19?

- Any patient 1.
- Any non-hospitalized patient \geq 18 years of age 2.
- Non-hospitalized patients \geq 12 years of age at high risk for severe disease 3.
- Hospitalized patients for COVID-19 \geq 12 years of age requiring oxygen 4. support

COVID 19

Keeping Up with a Moving Target

COVID 19

Keeping Up with a Moving Target

Thank You

